x^2+(4x-18)(4x-18)-4x-8(4x-18)=0

Simple and best practice solution for x^2+(4x-18)(4x-18)-4x-8(4x-18)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(4x-18)(4x-18)-4x-8(4x-18)=0 equation:



x^2+(4x-18)(4x-18)-4x-8(4x-18)=0
We add all the numbers together, and all the variables
x^2-4x+(4x-18)(4x-18)-8(4x-18)=0
We multiply parentheses
x^2-4x+(4x-18)(4x-18)-32x+144=0
We multiply parentheses ..
x^2+(+16x^2-72x-72x+324)-4x-32x+144=0
We add all the numbers together, and all the variables
x^2+(+16x^2-72x-72x+324)-36x+144=0
We get rid of parentheses
x^2+16x^2-72x-72x-36x+324+144=0
We add all the numbers together, and all the variables
17x^2-180x+468=0
a = 17; b = -180; c = +468;
Δ = b2-4ac
Δ = -1802-4·17·468
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-24}{2*17}=\frac{156}{34} =4+10/17 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+24}{2*17}=\frac{204}{34} =6 $

See similar equations:

| –4z+6=–2z | | -8x+2x-4=2(-3x-2) | | 12+21x-7x=8+14x | | d-10=-2;d | | x+x+56=4.5 | | X-13=24;x= | | 1/3t+6=8/3 | | 6m+29=89 | | -3(4m-1)+2m=103 | | m-3/8=-3/4 | | 22.1z+4.5)=21.6 | | 10+10x=15+15x-5x | | A/6=-2;a= | | x^2+(4x-18)^2-4x-8(4x-18)=0 | | 21​ (2p+8)=−p+5 | | 3x+9=5x–3 | | -4.5+w=9.7 | | 136=8(4k+5) | | 25+x=3x+1 | | –4z–3z=3 | | x+12=3;x | | –4z−–3z=3 | | x+58+58=5.8 | | 12x-(6x+3)=7x | | |10x|-5=20 | | Y-45=-12;y= | | 7x2+x=4 | | -20-+5x=5 | | 3+5.2x=19-2.8x | | 4x-10-2x=2x-3 | | u-31/6=7 | | 30=-3x;x+ |

Equations solver categories